Entanglement

Entanglement: Spooky Action at a Distance

Julien Ross

August 2025

ntanglement

Question

Is this quantum mechanics getting hard to believe?

ntanglemen

Question

Is this quantum mechanics getting hard to believe?

Einstein would agree! Together with Podolsky and Rosen, these three physicists claimed that quantum mechanics had an unresolvable paradox.

ntanglemen

Question

Is this quantum mechanics getting hard to believe?

Einstein would agree! Together with Podolsky and Rosen, these three physicists claimed that quantum mechanics had an unresolvable paradox.

The Paradox: Sometimes, measuring one qubit <u>instantly</u> changes the state of the another qubit. It doesn't matter how far apart the qubits are from one another.

ntanglemen

Question

Is this quantum mechanics getting hard to believe?

Einstein would agree! Together with Podolsky and Rosen, these three physicists claimed that quantum mechanics had an unresolvable paradox.

The Paradox: Sometimes, measuring one qubit <u>instantly</u> changes the state of the another qubit. It doesn't matter how far apart the qubits are from one another.

Huh?!

Can this really happen instantaneously? Einstein sarcastically called this *spooky action at a distance*.

Background: Is Entanglement Spooky?

ntanglement

Experiments would later show that what seemed to be a paradox was just another counterintuitive property of the world we live in.

Background: Is Entanglement Spooky?

ntanglemen^a

Experiments would later show that what seemed to be a paradox was just another counterintuitive property of the world we live in.

We now call this phenomenon *quantum entanglement*. That sounds far less spooky!

Background: Is Entanglement Spooky?

ntanglemen

Experiments would later show that what seemed to be a paradox was just another counterintuitive property of the world we live in.

We now call this phenomenon *quantum entanglement*. That sounds far less spooky!

We will now create a *Bell pair* – the simplest example of entanglement.

Entanglement

Initialize both qubits to $|0\rangle$.

Entanglement

Hadamard Gate: Changes top $|0\rangle$ to $|+\rangle$.

- **Before**: 100% chance of $|00\rangle$.
- After: 50% chance of $|00\rangle$, 50% chance of $|10\rangle$.

ntanglement

 $\textbf{Controlled-NOT} \hbox{: Flips bottom qubit if top qubit is } |1\rangle.$

Entanglement

Controlled-NOT: Flips bottom qubit if top qubit is $|1\rangle$.

• **Before**: 50% chance of $|00\rangle$, 50% chance of $|10\rangle$.

ntanglement

Controlled-NOT: Flips bottom qubit if top qubit is $|1\rangle$.

- **Before**: 50% chance of $|00\rangle$, 50% chance of $|10\rangle$.
- After: ?% chance of |?\), ?% chance of |?\).

Intanglement

Controlled-NOT: Flips bottom qubit if top qubit is $|1\rangle$.

- **Before**: 50% chance of $|00\rangle$, 50% chance of $|10\rangle$.
- After: 50% chance of $|00\rangle$, 50% chance of $|11\rangle$.

Measuring a Bell Pair

Intanglemer

There are two possible measurement outcomes:

- |00⟩ (50% chance)
- |11) (50% chance)

When we measure one qubit, we learn the state of the other qubit without checking!

Measuring a Bell Pair

ntanglemen

There are two possible measurement outcomes:

- |00⟩ (50% chance)
- |11) (50% chance)

When we measure one qubit, we learn the state of the other qubit without checking!

The Bell Pair

This particular configuration of probabilities and outcomes, involving both qubits, is what we call a *Bell Pair*

$$\Phi^+ = H = H$$

$$\Phi^+ = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

$$\Phi^+ = H = H = H$$

$$\Phi^+ = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

$$\Phi^{+} = \begin{array}{|c|c|} \hline H & \hline \\ \hline \end{array} = \begin{array}{|c|c|} \hline \\ \hline \end{array} = \begin{array}{|c|c|} \hline \\ \hline \end{array} = \begin{array}{|c|c|} \hline \\ \hline \end{array}$$

$$\Phi^+ = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

$$\Phi^{+} = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

$$\Phi^+ = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \end{array} = \begin{array}{c$$

$$\Phi^{+} = \begin{array}{c} H \\ \hline \end{array}$$

$$\Phi^+ = \begin{array}{c} H \\ \hline \end{array} = \begin{array}{c} - \\ \hline \end{array}$$

Bell Pair in ZX-Calculus

ntanglement

Our circuit is a bent wire—it connects two qubits in the sense that measuring one influences the other.

Bell Pair in ZX-Calculus

ntanglement

Our circuit is a bent wire—it connects two qubits in the sense that measuring one influences the other.

This is quantum entanglement!

Entanglement Does Not Depend on Distance

ntanglement

No matter how far apart the entangled qubits are, measuring one still determines the state of the other

Entanglement and Measurement

Intanglement

We can freely (un)bend wires in the ZX-calculus.

Entanglement and Measurement

ntanglement

We can freely (un)bend wires in the ZX-calculus.

Question Time!

Why does this equation tell us about Bell pairs?

Entanglement and Measurement

ntanglement

We can freely (un)bend wires in the ZX-calculus.

Question Time!

Why does this equation tell us about Bell pairs?

The Answer

A <u>measurement outcome</u> from the first qubit becomes the state of the second qubit.

There Are Many Ways to Entangle Qubits!

ntanglement

One of tomorrow's challenges introduces another circuit that achieves entanglement—this time, for 3 qubits!

$$|\mathit{GHZ}\rangle = \bigcirc$$

Quantum Teleportation: Scenario

ntanglement

Imagine that there are two friends named Alice and Bob. Alice has a qubit in an arbitrary state $|\psi\rangle$.

Alice wants to send her qubit to Bob. She could carry it to him, but there's a risk it could get stolen along the way. Instead, she decides to *teleport the data!*

Entanglement

Alice and Bob are physically separated and Alice has a qubit in state $|\psi\rangle.$

ntanglement

This circuit has 1 input and 1 output...

ntanglement

...but we have 3 qubits mid-way through the circuit.

ntanglement

Alice and Bob share a Bell pair.

ntanglement

Alice performs a Bell effect on her $|\psi\rangle$ qubit and her entangled qubit from the pair.

ntanglement

Alice performs a Bell effect on her $|\psi\rangle$ qubit and her entangled qubit from the pair.

You can learn what this means in terms of circuits tomorrow. For now, it's a wire bent to the right.

Wiring Bending is Quantum Teleportation

Entanglement

If we pull $|\psi\rangle$ along the wire, then $|\psi\rangle$ ends up with Bob, as desired.

Wiring Bending is Quantum Teleportation

Entanglement

If we pull $|\psi\rangle$ along the wire, then $|\psi\rangle$ ends up with Bob, as desired.

Note that only the *state of the qubit* has been teleported, Alice still has the particle.