Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Better Together: Multi-Qubit Operations

Fahimeh Bayeh

August 2025

Better Togethe

Conventiona Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

and Multi-Qubi

Conventional Conditions

Why Multi-Qubit Operations?

Better Togeth

Single qubit quantum computing is not very useful. For example...

Conventiona Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

Why Multi-Qubit Operations?

Better Togeth

Single qubit quantum computing is not very useful. For example...

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

(a) Utility placement problem with only one location to place a utility

(b) Agent-based modeling with only a single agent with one single decision

Why Multi-Qubit Operations?

Better Togeth

Single qubit quantum computing is not very useful. For example...

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qubit Gates

(a) Utility placement problem with only one location to place a utility

(b) Agent-based modeling with only a single agent with one single decision

To do more, we will need to learn about multi-qubit operations!

Conditional Statements

Better Togethe

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates As we say in the last lecture, conditions are important in programming. We want to understand programs that do different things depending on whether a condition is **true** or **false**.

Conditional Statements

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates As we say in the last lecture, conditions are important in programming. We want to understand programs that do different things depending on whether a condition is **true** or **false**.

A Sociological Example

Sometimes sociologists come up with rules for how people interact, which they then want to test out on a computer.

Better Togeth

Oh No!

Alice and Bob are not getting along, and Bob just insulted Alice! What will Alice do...?

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

Oh No!

Alice and Bob are not getting along, and Bob just insulted Alice! What will Alice do...?

Alice decided that Bob needs some space. She has left in response so that they can talk it out later.

Better Togeth

Oh No!

Alice and Bob are not getting along, and Bob just insulted Alice! What will Alice do...?

Alice decided that Bob needs some space. She has left in response so that they can talk it out later.

bit: is insulted

program: leave()

Conventiona Conditions

Quantum Conditional

Multi-Qubi ZX-Calcult

and Multi-Qui Gates

Better Togeth

Oh No!

Alice and Bob are not getting along, and Bob just insulted Alice! What will Alice do...?

Alice decided that Bob needs some space. She has left in response so that they can talk it out later.

bit: is insulted

program: leave()

if is_insulted then leave()

Conventiona Conditions

Quantum Conditional

Multi-Qubi ZX-Calculu

and Multi-Qu Gates

Conditional Statements as Multi-Qubit Operations

Better Togeth

Let us pretend that leave() is a gate. We want to apply a gate G depending on whether our first bit is in state $|0\rangle$ or $|1\rangle$.

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

if
$$q = |1\rangle$$
 then $G \Leftrightarrow \overline{G}$

Conditional Statements as Multi-Qubit Operations

Better Togeth

Let us pretend that leave() is a gate. We want to apply a gate G depending on whether our first bit is in state $|0\rangle$ or $|1\rangle$.

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

if
$$q = |1\rangle$$
 then $G \Leftrightarrow \overline{-G}$

Conditional Statements as Multi-Qubit Operations

Better Togeth

Let us pretend that leave() is a gate. We want to apply a gate G depending on whether our first bit is in state $|0\rangle$ or $|1\rangle$.

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qubi

if
$$q = |1\rangle$$
 then $G \Leftrightarrow \overline{-G}$

if
$$q = |0\rangle$$
 then $G \Leftrightarrow G$

setter Togetr

Let's see what happens when G is the NOT gate.

Conventions Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

Better Togeth

Let's see what happens when G is the NOT gate.

Conventiona Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

Better Togeth

Let's see what happens when G is the NOT gate.

Conventiona Conditions

Quantum Conditional:

Multi-Qubit ZX-Calculus

Better Togeth

Let's see what happens when G is the NOT gate.

Conventiona Conditions

Quantum Conditional:

Multi-Qubit ZX-Calculus

Better Togethe

Conventiona Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

and Multi-Qub
Gates

Quantum Conditionals

Controlled Gates vs. Measurement-based Control

Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

Controlled Gates vs. Measurement-based Control

Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

er Togeth

Let's think about what this means.

Conventions

Quantum Conditionals

Multi-Qubit ZX-Calculus

Better Togeth

Let's think about what this means.

Question

What are the possible states for a pair of bits?

Conventiona Conditions

Conditional

Multi-Qubit ZX-Calculus

Better Togeth

Let's think about what this means.

Question

What are the possible states for a pair of bits?

Possible States: $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$.

The controlled-NOT gate gets applied to each possible state, as if all four computations were happening at once!

$$|00\rangle\mapsto|00\rangle \quad |01\rangle\mapsto|01\rangle \quad |10\rangle\mapsto|11\rangle \quad |11\rangle\mapsto|10\rangle$$

Better Togeth

Let's think about what this means.

Question

What are the possible states for a pair of bits?

Possible States: $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$.

The controlled-NOT gate gets applied to each possible state, as if all four computations were happening at once!

$$|00\rangle \mapsto |00\rangle \hspace{0.5cm} |01\rangle \mapsto |01\rangle \hspace{0.5cm} |10\rangle \mapsto |11\rangle \hspace{0.5cm} |11\rangle \mapsto |10\rangle$$

This effect can be used to perform many calculations at once!

Better Togeth

Let's think about what this means.

Question

What are the possible states for a pair of bits?

Possible States: $|00\rangle$, $|01\rangle$, $|10\rangle$ and $|11\rangle$.

The controlled-NOT gate gets applied to each possible state, as if all four computations were happening at once!

$$|00\rangle\mapsto|00\rangle \quad |01\rangle\mapsto|01\rangle \quad |10\rangle\mapsto|11\rangle \quad |11\rangle\mapsto|10\rangle$$

This effect can be used to perform many calculations at once!

However... We must perform a measurement to get an answer... So, we only get one answer as the state collapses.

Conventiona

Quantum Conditionals

Multi-Qubit ZX-Calculus

Working with Controlled NOT Gates

Better Togethe

We could do everything with controlled NOT gates, but it is really *really* hard.

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

Controlled Gates in ZX-Calculus

Better Togethe

Sadly, the only controlled gates we can easily write in the ZX-calculus are the controlled NOT gates.

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

Better Together

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

and Multi-Qub
Gates

Multi-Qubit ZX-Calculus

Something New? Vertical Wires!

Better Together

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Wires in the ZX-calculus are like real wires. We can slide things along the wires as long as they don't pass through each other!

Something New? Vertical Wires!

Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Wires in the ZX-calculus are like real wires. We can slide things along the wires as long as they don't pass through each other!

So what does this tell us about the vertical wires...? Are these dots with more than one input or output...?!

Special Dots in ZX-Calculus

Better Togeth

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Dots With One Input and Two Outputs:

• Special programs that copy states of the opposite color.

Special Dots in ZX-Calculus

Better Togeth

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Dots With One Input and Two Outputs:

• Special programs that copy states of the opposite color.

Special Dots in ZX-Calculus

Better Togeth

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Dots With One Input and Two Outputs:

• Special programs that copy states of the opposite color.

Dots With Two Inputs and One Output:

• Special programs that copy measurement outcomes of the opposite colour.

Special Dots and Negation

Better Togeth

Conventional

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates If we negate something and then copy it, then this is the same as copying and then negating both of the copies.

$$-\pi - = -\pi$$

Properties of Copying

Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates **Copying a Second Time**: It should not matter whether we copy the original or the copy.

Properties of Copying

Better Togeth

Copying a Second Time: It should not matter whether we copy the original or the copy.

Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Measuring Deletes Copies: Copying and then measuring with respect to the same rotational axis is same as doing nothing.

Properties of Copying

Better Togeth

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates In a complicated diagram, we only care about the number of inputs and outputs.

Properties of Copying

Better Togeth

In a complicated diagram, we only care about the number of inputs and outputs.

Conditions Quantum

Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

The right hand side is called a *spider*!

Rules of Spiders

Better Togethe

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Better Togethe

Conventiona Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub

ZX-Calculus and Multi-Qubit Gates

Rules of Spiders

Better Togeth

In the ZX-calculus, red spiders and green spiders do not get along!

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qubi

$$\begin{array}{cccc}
n & \alpha & m \\
s & \beta & t
\end{array} =
\begin{array}{cccc}
n & \alpha & m \\
s & \beta & t
\end{array}$$

Swapping Things Up

Better Togethe

Time to Help Alice and Bob Again

Bob has an apple and Alice doesn't have any apples. Bob decides to give Alice an apple to make up for insulting her. Can we make a gate to do this?

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Swapping Things Up

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Time to Help Alice and Bob Again

Bob has an apple and Alice doesn't have any apples. Bob decides to give Alice an apple to make up for insulting her. Can we make a gate to do this?

The SWAP gate swaps the values of two bits.

- Bob has an apple and Alice doesn't have any apple.
- After swapping, Bob won't have an apple and Alice will have an apple.

Swapping Things Up

Better Togeth

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

Time to Help Alice and Bob Again

Bob has an apple and Alice doesn't have any apples. Bob decides to give Alice an apple to make up for insulting her. Can we make a gate to do this?

The SWAP gate swaps the values of two bits.

- Bob has an apple and Alice doesn't have any apple.
- After swapping, Bob won't have an apple and Alice will have an apple.

In case of qubits, swap gate works as follows:

$$|00\rangle\mapsto|00\rangle \quad |01\rangle\mapsto|10\rangle \quad |10\rangle\mapsto|01\rangle \quad |11\rangle\mapsto|11\rangle$$

Rules of Swap Gate

In a circuit diagram, we can think of the swap gate as crossing to two wires.

Rules of Swap Gate

Better Together

Conventional Conditions

Quantum Conditionals

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates

$$\begin{array}{c}
A \\
B
\end{array}$$

Swap Gate via Controlled-NOT

Better Togeth

We make our own swap gate using controlled-NOT gate:

Conventional Conditions

Quantum Conditional:

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub

Better Togeth

We will verify the second property using properties of the controlled NOT gate:

= ----

Better Togethe

We will verify the second property using properties of the controlled NOT gate:

Better Togethe

We will verify the second property using properties of the controlled NOT gate:

We will verify the second property using properties of the controlled NOT gate:

Better Togethe

Conventional

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates We will verify the second property using properties of the controlled NOT gate:

Better Togethe

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates We will verify the second property using properties of the controlled NOT gate:

Better Togethe

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates We will verify the second property using properties of the controlled NOT gate:

Better Togeth

Conventional

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates We will verify the second property using properties of the controlled NOT gate:

Better Togethe

Verify the fourth property as well, using properties of the controlled NOT gate:

=

ZX-Calculus and Multi-Qul

Better Togethe

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Better Togeth

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Better Togetho

Conventional Conditions

Quantum Conditional

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates Verify the fourth property as well, using properties of the controlled NOT gate:

Photo Credits

setter Togeth

Conventional Conditions

Quantum Conditiona

Multi-Qubit ZX-Calculus

ZX-Calculus and Multi-Qub Gates The following were created specifically for this presentation.

- All circuit diagrams.
- All ZX-diagrams.
- The illustration of Alice, Bob, and Eve interacting.

All other illustrations were generated using MonshaAI.